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Intermittency in a turbulent low temperature gaseous helium jet
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Abstract. We analyse experimental velocity measurements on the axis of a low temperature gaseous helium
jet. From independent increments arguments, we reproduce the behaviour of structure functions. We show
where this approach fails and how the intermittency phenomenon is a small correction. The physical
arguments under the multiplicative cascade models for this intermittency imply an acceleration of this
cascade close to the dissipative range, which we are able to evidence. This acceleration could be responsible
of the apparent Extended Self Similarity between structure functions of various orders.

PACS. 47.27.Wg Jets – 47.27.Gs Isotropic turbulence; homogeneous turbulence – 47.27.Jv High-Reynolds-
number turbulence – 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin, etc.)

1 Introduction

Intermittency is a striking feature of turbulent flows [1].
It can also be observed in fields as different as the change
ratio of money [2,3] or the brightness intensities in pic-
tures [4]. In turbulent flows, it can be defined [5] as the pro-
gressive change of shape of the probability density func-
tions of velocity differences at distance r, when r goes
from the correlation (integral) length L of the flow, down
to the dissipative length η, where the velocity difference
is simply proportional to the velocity gradient.

Theoretical discussions of this phenomenon have long
been centered on the infinite Reynolds number limit [6].
But the obvious interest of finite Reynolds, and the dif-
ficulty to safely extrapolate the experimental results to
the infinite limit, led recently to consider the corrections
to this limit [7,8]. The question then seriously arose if
the viscosity (the Reynolds number) could influence the
whole range of scales, from η up to the integral scale L
[9–11]. For instance the structure functions of order p:
Sp(r) = 〈|δv|p〉 where δv is the longitudinal velocity dif-
ference, or their equivalent based on a more sophisticated
wavelet decomposition [11], could be interpreted as a uni-
versal function of rβ where β is a Reynolds dependent
exponent going to zero when Re goes to infinity [7]. In a
parallel but partly related way, these structure functions
behave as power laws of each other down to scales obvi-
ously influenced by viscosity (Extended Self Similarity or
ESS) [12]. This suggests that the same process drives the
evolution of the statistics down to these scales [8].

In this paper, in order to lie the discussion on firm ba-
sis, we shall try to reproduce the behaviour of the struc-
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ture function Sp(r) starting from the most naive argu-
ments of independent increments. We shall see how it fails
and how a tiny correction the intermittency phenomenon
is. Then we shall track the physical basis lying under the
multiplicative process formalism. This will lead us to an
equation modelizing the behaviour of structure functions.
According to this equation, both the rβ ansatz and ESS
are approximations, good at moderate Reynolds numbers,
but increasingly bad at higher Reynolds.

2 Experiments

The data we use in this paper are velocity measurements
on the axis of a jet, the working fluid being low temper-
ature gaseous helium [13]. The cryogenic hot wire probe
is made of AuGe sputtered on a fiber glass, 1.5 µm in
diameter [14]. The AuGe layer is 3 000 Å thick and is
shortened by a Au+Ag layer, except on a short (0.5 µm)
length, which acts as the hot point (Fig. 1). Its resistance
is R = 200 Ω at the working point ('15 K with a gas tem-
perature of 4.3 K). The sensor temperature sensitivity is
|(T/R)dR/dT | ≈ 0.45. It is operated at constant tempera-
ture through a homemade anemometer electronics adapt-
ed to low temperatures: the balance of a 10 MHz bridge
is synchronously detected, low pass filtered (1 MHz), inte-
grated and injected in the probe as a “dc” current. Joule
heating, both from the 10 MHz probing current and from
the “dc” component, allows to lock the wire temperature
at a constant value. The “dc” component is a measure-
ment of the fluid velocity. We shall describe the calibration
procedure after the geometry of the jet.

After filtering and laminarizing, He gas goes through a
convergent cone, 30◦ half angle, ending on a nozzle 2 mm
in diameter. The jet then develops downwards in a cylin-
drical chamber of vertical axis, 12 cm in diameter (Fig. 2).
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Fig. 2. The experimental cell.

A grid, 16 cm away from the nozzle, stabilizes the jet by
breaking the largest eddies before they can interact with
the walls. Helium then flows out of the cryostat to a recu-
peration tank.

The working position of the probe is on the axis, 8 cm
away from the nozzle (i.e. 40 nozzle diameters). For cali-
bration, we can move the sensor up in situ into the nozzle
potential cone, but we had troubles with this procedure
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Fig. 3. Experimental sensor calibration points (Reynolds vs.
voltage) and calibration curves for different Re numbers.

due to bad electrical contacts in the moving connecting
wires. We thus positioned the probe at a 8 cm working
distance, and we recorded the average signal versus the
nozzle Reynolds number. We obtained a rough calibration
which was mainly used as a verification of the procedure
we present now.

Indeed, several studies [15] have shown that the distri-
bution of velocities is nearly Gaussian in turbulent flows,
and especially in jets on their axis. Reported discrepan-
cies are close to experimental uncertainties. If we consider
this distribution P (v) as known, we can infer the calibra-
tion from the observed distribution of the signal s. Let us
consider the distribution:

P (v) ∝ v2 exp− (v − V )2

2τ2V 2
,

where V is experimentally determined from the nozzle
Reynolds number and from the distance between the noz-
zle and the sensor: V is close to the average velocity. The
prefactor v2 takes into account both the sensitivity of our
wire to all the velocity components [16] and its inade-
quacy in the neighbourhood of v = 0. τ is the turbulence
ratio: taking it as τ = 0.23 gives a nice coincidence be-
tween the calibrations based on the various runs, at dif-
ferent Reynolds numbers, and with the previous rough cal-
ibration. In Figure 3, we show the comparison. Note the
units chosen for the velocity: for direct comparison with
the rough calibration above, we express it as the nozzle
Reynolds number Re which would result in an average
velocity equal to the velocity we measure. Once the cali-
bration relation determined, each measured voltage gives
us a number Re related to the instantaneous velocity v
through:

v = 〈v〉Re/〈Re〉,

where 〈Re〉 is the nozzle Reynolds number of the exper-
iment, and 〈v〉 the average velocity on the probe [14].
In Figure 3, the curves correspond to the calibrations
obtained from each experiment through the Gaussian
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distribution hypothesis as explained above. The points
correspond to the nozzle Reynolds number versus the av-
erage voltage.

Let us call c(v) (resp. c′(s)) the proportion of the data
giving a velocity (resp. signal) lower than v (resp. s), i.e.
we have: ∫ v

−∞
P (v′)dv′ = c(v),

or

P (v) =
dc(v)

dv
·

The calibration v(s) is then obtained from the equality:

c (v(s)) = c′(s).

As said above, all our measurements are made with a
single probe. To obtain longitudinal velocity differences,
we refer to the Taylor frozen turbulence hypothesis [1].
However, in a jet, large relative variations of the veloc-
ity occur. Using the average flow velocity to convert time
in distances is spurious. We rather use the instantaneous
velocity in the following way [17]. From a given starting
point, we calculate the distances Ri by summing the ob-
served velocities:

Ri =
∑
j<i

vj∆t,

where (∆t)−1 is the sampling frequency. We then deter-
mine velocities at regularly spaced points, whose distance
is m δx, by interpolation between vi and vi+1, where i is
such that:

Ri < m δx ≤ Ri+1.

Those velocities are then taken to reconstruct the regu-
larly spaced velocity file. Figure 4 shows the spectra of the
original “temporal” file together with that of the “spatial”
file, for one of our runs. The correction has been shown to
be equivalent to the Lumley correction for spectra [18].

Let us now say a few words about noise. As the noise
is a priori uncorrelated with the physical signal, we can
correct statistical quantities, such as structure functions,
from it. If the noise b can be considered as small compared
to the velocity difference, then:

〈(δv + δb)p〉 ≈ 〈(δv)p〉+
p(p− 1)

2
〈(δb)2〉〈(δv)p−2〉,

as 〈δb〉 = 0, where δb = b(R+ r)− b(R) and 〈 〉 stands for
ensemble average.

Non integer p are possible only using absolute value
moments. Then a formula such as

〈|δv|p〉 ≈ 〈|δv + δb|p〉 − p(p− 1)
2

〈(δb)2〉〈|δv + δb|p−2〉,
(1)

is rigorously valid only for even integer p, but gives an
interpolation formula for all p values.
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Fig. 4. Comparison between the original temporal spectra and
the “reconstructed” spatial one (instantaneous velocity).

Now the noise can be recorded independently as a sig-
nal noise n, not directly related to the velocity noise b. If
v(s) is our calibration function we can approximate:

v(s+ n) ≈ v(s) + n
dv
ds

= v(s) + b.

Thus, using the noise record and our velocity file, we can
construct for each point a model noise:

b = n
dv
ds
,

whose statistical characteristics, in particular the second
moment of differences

〈δb2〉(r),

should be identical to those of the real noise which affects
our file. Let us stress again that we correct the structure
functions, through equation (1), and not the instantaneous
velocity (which is impossible). Figure 5 shows the logarith-
mic derivative of the third structure function with and
without the correction. While the uncorrected one is af-
fected by the noise at rather large r, the corrected one
goes at higher values, closer to 3, at small distance r.

3 Kolmogorov 41 and velocity diffusion

Figure 6 gives the logarithmic derivative of 〈|δv|3〉(r) for
various Taylor scale based Reynolds numbers Rλ [1]. The
abscissa are slightly shifted by a factor (20% correction
at most without any trend versus Rλ) to make the data
coinciding at the point where they go to zero, in order to
stress the identity of their variations at large r. Indeed
the figure can be interpreted by the observation that the
behaviours are apparently independent of the Reynolds
number down to the point where dissipation occurs.

This observation is the very basis of Kolmogorov 41
analysis, except that in this frame the non-dissipative



312 The European Physical Journal B

0

0.5

1

1.5

2

2.5

3

10 100 103 104 105

dl
n 

| 
 v

|3
/d

ln
r

r (µm)

Uncorrected

R   = 703

Corrected

λδ

Fig. 5. Logarithmic derivative of the third structure function
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range is generally modelized by a power law-behaviour
for 〈|δv|p〉 i.e. a plateau for the logarithmic derivative.
Clearly, limiting ourself to a plateau region would strongly
reduce the interesting range, and even cancel it as the in-
fluence of large scale goes far down. The importance of
addressing the finite Reynolds problem has been central in
the last decade research on turbulence (see [5,7–13,19,20]
but also the recent work [21–23]). Here we need a
Kolmogorov 41 model for finite Reynolds. It can be ob-
tained remarking that it corresponds in its spirit to a dif-
fusion in the velocity space, the diffusion constant being
ε, the dissipated power per unit mass.

The saturation of 〈|δv|p〉 at large scales is then remi-
niscent of the physics of the Langevin model for Brownian
motion, where the friction term saturates the r.m.s. veloc-
ity at large times. Let us write a Langevin equation for
the velocity difference between two points [24]:

δ̇v = −γδv + f(t), (2)

where f(t) is a δ correlated noise:

〈f(t1)f(t2)〉 = εδ(t1 − t2). (3)

The Langevin equation integrates in:

δv(t) =
∫ t

0

e−γ(t−t′)f(t′)dt′,

which gives for the second moment:

〈δv2〉 =
ε

2γ
(1− e−2γt)

= v2
0E(γt). (4)

Integrating again gives for the distance:

r(t) =
∫ t

0

dt′
∫ t′

0

e−γ(t′−t′′)f(t′′)dt′′,
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Fig. 6. Logarithmic derivative of 〈|δv|3〉 vs. r for various Taylor
scale based Reynolds numbers.

and for the mean squared distance:

〈r2〉 =
ε

γ3

{
2
(
γt+ e−γt − 1

)
−
(
1− e−γt

)2}
=

ε

γ3
F (γt). (5)

For small γt, we obtain:

〈δv2〉 = εt; 〈r2〉 =
2
3
εt3. (6)

The second formula is the Richardson law [25].
Assimilating 〈r2〉 with the square of the distance gives
〈δv2〉 =

(
(3/2)ε2r2

)1/3
.

On the other hand, the large scale saturation gives γ
being proportional to ε:

γ =
ε

2v2
0

· (7)

The physical interpretation is that the large scale veloc-
ity differences amplitude results from the competition be-
tween two effects: a random, δ correlated noise which tends
to make it grow, and a damping γ which limits the mem-
ory of this noise to a typical time 1/γ.

We now have a model for infinite Reynolds but no
dissipative transition. Indeed what physically occurs in
the small scales r < η, where η is a dissipative scale, is
that velocity differences are proportional to r, that is f
is proportional to r. This can be taken into account, in
an ad hoc (i.e. approximate) way corresponding to the fa-
mous Batchelor ansatz, replacing in equations (4, 5) ε by:

ε′ = ε
r2

r2 + η2
· (8)

Then:

r2 =
ε

γ3

r2

r2 + η2
F (γt), (9)
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and

r2 + η2 =
ε

γ3
F (γt), (10)

which gives γt and thus

〈δv2〉 =
r2v2

0

r2 + η2
E(γt). (11)

Figure 7 compares the experimental results for the loga-
rithmic derivative of 〈δv2〉 with this model where the only
adjustable parameter is η, i.e. the Reynolds number.

4 Intermittency

The fact that the Kolmogorov 41 theory (K 41) gives an
overall good account of the behaviour of low order struc-
ture functions is indeed well known. However, the pro-
gressive change in shape of the probability distribution
function (pdf) of dv with r is generally seen as a proof
of the inadequacy of K 41 and is referred to as the phe-
nomenon of intermittency. If the various moments of δv
only depend on ε and r, then

u =
δv

(εr)1/3
,

must have a universal distribution. But this is in fact an
infinite Reynolds number argument. It not only assumes
independence versus v0 and η. It also assumes indepen-
dence versus the distribution of f(t). If f is not Gaus-
sian, then the fourth cumulant of δv will be non-zero and
proportional to t in the Langevin model of the previous
section, for small enough t:

〈δv4〉 − 3〈δv2〉2 = a4t.

In the same limit 〈δv2〉 = εt, and:

〈δv4〉
〈δv2〉 = 3〈δv2〉+

a4

ε
·
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Fig. 8. Derivative of 〈δv4〉/〈δv2〉 versus 〈δv2〉.

Thus the derivative of this ratio versus 〈δv2〉 should be
constant, equal to 3. This is plotted in Figure 8. Although
tiny, the discrepancy is clear. An independent increments
model, as the Langevin model of the previous section, can-
not account for this discrepancy. The memory it implies
is generally attributed to the inhomogeneity of the dissi-
pation ε, which would make, in the Langevin model, the
diffusion coefficient to vary. It can be described by a mul-
tiplicative cascade.

5 Physical soundness of the cascade

It must be emphasized, from the beginning, that the mul-
tiplicative cascade approach is completely different from
the previous, velocity diffusion, one. The only compatibil-
ity between the two approaches raises unsolved problems
which go outside the scope of this paper. We simply re-
mark that, as for the diffusion one, this multiplicative ap-
proach has some success in describing turbulent flows. It
seems thus worthwhile to follow and to test its logic.

The multiplicative approach lies on the assumption
that universal relations exist between the δv pdfs at dif-
ferent scales (we shall limit ourself to the absolute values
〈|δv|〉):

Pr(|δv|) =
∫
Grr′(lnα)

1
α
Pr′

(
|δv|
α

)
d lnα, (12)

with r < r′ [8,18,19].
Such a relation can be interpreted in two different

ways. Velocity differences at scale r appear as those at
scale r′ multiplied by a random factor α, the logarithm
of which having the distribution Grr′ . In the spirit of the
Kolmogorov-Obukov 62 theory (KO 62) typical velocities
at scale r go like (εrr)1/3. Thus:

α =
(
εr
εr′

r

r′

)1/3

, (13)
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and the distribution of α comes from the distribution of
the local ratios εr/εr′, where εr is the local energy transfer
rate at scale r.

This is the physical interpretation which relates the
multiplicative velocity cascade to the energy cascade down
the scales, toward dissipation. On a formal point of view,
one can remark that the above relation is a convolution
when expressed in the ln |δv| variable. This is due to the
translation symmetry in ln |δv|. Multiplying all the veloc-
ities of the flow by the same factor does not change any-
thing to the physics if we simultaneously multiply the vis-
cosity ν by the same factor, to hold the Reynolds number
constant. Thus this multiplicative velocity cascade could
be purely formal and have nothing to do with the energy
cascade. Let us check this physical idea.

First, we have to characterize the cascade. As remarked
above [8,21], calling P̄ the distribution of ln |δv| we can
write:

P̄r = Grr′ ⊗ P̄r′ ,

but also

P̄r = GrL ⊗ P̄L,

and

P̄r′ = Gr′L ⊗ P̄L,

where L is now a reference length (large scale) which we
can take sufficiently large in order that the distribution
does not evolve anymore. As these relations are assumed
valid whatever P̄L, it implies:

GrL = Grr′ ⊗Gr′L.

It is thus sufficient to characterize the distribution GrL
for any r. For this we can use its cumulants. From

〈|δv|p〉r = 〈αp〉rL〈|δv|p〉L,

we can obtain experimentally

〈αp〉rL =
〈|δv|p〉r
〈|δv|p〉L

· (14)

From now, we shall omit the index r or L for α:

〈αp〉 = 〈exp(p lnα)〉 = exp
{
C1p+ C2

p2

2!
+ . . .

}
, (15)

where Ci is the ith cumulant of GrL. This gives the way
to experimentally determine the coefficients Ci at each
scale [20]. Plotting (1/p) ln〈αp〉 versus p, for p going from 1
to 6, gives a quasi-linear graph, which gives C1 when lin-
early extrapolated to p = 0. Following the same procedure,
the derivative of this graph gives C2, and the average slope
of this derivative gives an estimate of C3. It is generally
found [10,20] that C3 is measurable but very small, while
some closely related analysis [11] find C3 = 0. In this pa-
per we shall limit ourself to the first two cumulants C1

and C2, i.e. to the so-called log-normal approximation.
C1 = 〈lnα〉 is the average of lnα, and C2 is the mean
squared deviation:

C2 = 〈(lnα− 〈lnα〉)2〉. (16)

Figure 9 shows the behaviour of C2 versus C1 for different
Reynolds numbers. They look as proportional down to
very small scales. At the point marked by a bar, at small
scales, the value of the logarithmic derivative of 〈|δv|3〉 is
already:

d ln〈|δv|3〉
d ln r

= 2.5,

close to the dissipative range value: 3 (see insert). This
proportionality on an extended range is equivalent to the
Extended Self Similarity.

Now, the physical cascade picture has consequences on
the behaviour of C2 versus r. The cascade should stop and
the signal should become smooth when the local Reynolds
number crosses a critical value close to 1. A local Reynolds
number can be estimated as αvr/ν. Large α regions would
become smooth for smaller scales than small α ones.

Above this dissipation threshold, in the inertial range,
α roughly goes as r1/3. Under the threshold, in the smooth
dissipative range, α goes like r. This change of “velocity”
d lnα/d ln r occurs first for small α, then for large ones,
and thus stretches the distribution of lnα, increasing its
width

√
C2.

Thus the smoothing effect of the viscosity is completely
different from that of low pass filtering the signal. In the
latter case, the change of d lnα/d ln r occurs for all α at
the same r. The distribution of α is not stretched and C2

is not increased.
We can check this effect. We obtained a filtered {yi} file

from the {xi} one (for Rλ = 703) through the exponential
average:

yi = θxi + (1− θ)yi−1,
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with θ = 0.1. As the recording step roughly corresponds to
the scale η, it is equivalent to averaging at the scale 10η.

As shown in Figure 10, the behaviour of
d ln〈δv2〉/d ln r for the low pass filtered Rλ = 703 file,
is very similar to the Rλ = 352 case. However the
corresponding behaviours of dC2/d ln r are completely
different (Fig. 11a). The filtered file does not show the
peak close to the dissipation scale, predicted (Fig. 11b)
from the physical interpretation, and observed (Fig. 11a)
on unfiltered files. This gives support to the physical
origin of the cascade and to the physical significance and
soundness of the quantity C2.

6 A model for C2

Up to now, there is no model of intermittency which in-
cludes all the observed characteristics of the cascade:

– no cascade (C1 = C2 = 0) for r larger than some large
scale, of the order of the integral one,

– approximate proportionality between C1 and C2 under
this scale (E.S.S.) down to a dissipative scale,

– saturation of C2 at the dissipative scale while C1 be-
comes proportional to r.

Even an ad hoc model, however, would be useful for
testing the compatibility of these apparently simultane-
ous properties. In this section, we try to construct such a
model from the accepted physical ideas on the cascade.

As said above, local variations in the multiplier α can
be seen as variation of the local mean squared deviation of
the velocity difference σ2 = α2v2

0. In the Langevin model
these variations could in turn be attributed to local vari-
ations of ε but also of γ in such a way that v2

0 remains
constant. We cannot pretend to treat exactly this difficult
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problem, but we can modelize this effect via the ansatz:

σ2 =
r2v2

0

r2 + η2
E(y),

with y = ε
t

2v2
0

, and E(y) = 1− e−2y.

Then

δ lnσ =
(
∂ lnσ
∂ ln ε

)
r,t

δ ln ε =
1
2

d lnE
d ln y

δ ln ε,

and

dC2

d ln r
=

d
d ln r

〈(δ lnσ)2〉 =
(

1
2

d lnE
d ln y

)2 d
d ln r

〈(δ ln ε)2〉.

This is sufficient to understand why C1 = C2 = 0 at
large scales. In this range E is independent of y, and both
dC1/d ln r and dC2/d ln r are zero.
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d〈(δ ln ε)2〉/d ln r traduces the progression in scales of
the energy cascade. Let us assimilate it with the progres-
sion of ln t in the Langevin model

d
d ln r

〈(δ ln ε)2〉 = K
d ln t
d ln r

,

K being a constant. It is certainly true at very large
Reynolds, in the inertial range, due to scale invariance,
but not outside. We do not pretend to exactitude. We
only make the simplest hypothesis. When the dissipative
scales are reached, the cascade in ε is simply frozen, as the
evolution of t is frozen via the Batchelor ansatz (Eq. (10)).
For r < η, d ln t/d ln r is zero and thus dC2/d ln r is zero.

We can estimate d ln t/d ln r via

dC1

d ln r
≈ d lnσ

d ln r
=

1
2

d lnE
d ln y

d ln t
d ln r

+
η2

η2 + r2
,

where we neglect the intermittency and thus the variation
of ε compared to other terms. Then:

d ln t
d ln r

= 2
d ln y
d lnE

(
dC1

d ln r
− η2

η2 + r2

)
.

To eliminate all the quantities which are defined through
a model, as d lnE/d ln y, we can remark that it can be
approximated by 2dC1/d ln r. Their ratio

d ln t
d ln r

+ 2
η2

η2 + r2

d ln y
d lnE

never vanishes, being 2 in the dissipative range, 2 in
the large scales and 2/3 in the inertial scales. Thus,
approximating d lnE/d ln y by 2dC1/d ln r is equivalent
to have a smoothly varying “constant” K. We finally thus
propose:

dC2

d ln r
= K

dC1

d ln r

(
dC1

d ln r
− η2

η2 + r2

)
.

Indeed, we do not have all the contributions to dC2/d ln r.
The stretching effect we discussed in the previous section,
due to variation in the drift “velocity” dC1/d ln r of the
distribution of lnα, is not taken into account. Before to
show how we can make it, let us clarify the argument
by some notation change: x = lnα, z = ln r. The local
Reynolds number:

Rel =
αv0r

ν
,

is such that lnRel = x+ z + cste.
Let us approximate the cumulative density function

c(x) by a linear function:

c(x) = D(x− 〈x〉) +
1
2
,

or
x(c) = 〈x〉 +

1
D

(
c− 1

2

)
.

We then have for the average:

C1 =
∫ 1

0

xdc = 〈x〉,

and for the mean squared deviation:

C2 =
∫ 1

0

(x− 〈x〉)2dc =
1

12D2
·

Differentiating the relation for x(c) at constant c (q =
∂〈x〉/∂z): (

∂x

∂z

)
c

= q −
(c− 1

2 )
D2

dD
dz

= q +
(x− 〈x〉)

2
1
C2

dC2

dz

sum of a drift and of a widening of the distribution. The
widening itself can be partly due to stretching, i.e. to a
dependence of the drift with the variable x. To identify
this term we can consider the second term as only taking
into account the other sources of widening discussed pre-
viously, and take q as x dependent (indeed x+z dependent
as seen above):

q = q(〈x〉 + z) + (x− 〈x〉)
(
∂q

∂x

)
z

,

we then obtain:

dC1

dz
=
∫ 1

0

∂x

∂z
dc = q(〈x〉 + z),

and

d2C1

dz2
=
(
∂q

∂x

)
z

(
dC1

dz
+ 1
)
,

which gives:

dC2

dz
= 2

∫ 1

0

(x− 〈x〉)∂x
∂z

dc

=
{

2
(
∂q

∂x

)
z

+
1
C2

(
dC2

dz

)
other

}∫ 1

0

(x− 〈x〉)2dc

= 2
C2

d2C1

dz2

1 +
dC1

dz

+
(

dC2

dz

)
other

.

All together we have the model equation for the evolution
of C2, taking into account both the stretching and the
cascade:

dC2

d ln r
= 2C2

d2C1

d(ln r)2

(
1 +

dC1

d ln r

)−1

+K
dC1

d ln r

(
dC1

d ln r
− η2

η2 + r2

)
.

Note that, dividing by K, all adjustable parameters dis-
appear for the evolution of Y = C2/K:

dY
d ln r

= 2Y
d2C1

d(ln r)2

(
1 +

dC1

d ln r

)−1

+
dC1

d ln r

(
dC1

d ln r
− η2

η2 + r2

)
.
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Fig. 12. Model evolution of C2 versus ln δv2. Open symbols:
without stretching, full symbols: with stretching. For compar-
ison, experimental points for Rλ = 703 are also plotted with
crosses.

We can also remark that, for large Reynolds numbers, in
the inertial range dC1/d ln r ≈ 1/3 and d2C1/d(ln r)2 ≈
0 which gives dC2/d ln r ≈ K/9. Thus K is close
to the parameter µ of the Kolmogorov-Obukov theory
K ≈ µ ≈ 0.2.

7 Discussion and conclusion

The model evolution for intermittency we derived above
shows no indication of Extended Self Similarity. dC2/d ln r
is never proportional to dC1/d ln r, except in the trivial
case where they both are constant, in the inertial range of
very large Reynolds numbers. Nevertheless, the evolution
we can infer from it, as shown in Figure 12, is close to the
experimental one.

Independently of what occurs in real life, we can see for
the model that this apparent linear dependence of C2 ver-
sus C1 is an artefact. This was already suggested, on other
grounds, by previous authors [26]. At large scale, the part
where dC1/d ln r goes to zero poorly contributes to the
evolution of C1 and C2. Most of the variations can be at-
tributed to the plateau where both derivatives dCi/d ln r
are nearly constant. On the other side the stretching of the
distribution gives a rise in dC2/d ln r, which mimics the
related rise in dC1/d ln r. Considering only the stretching
gives:

1
C2

dC2

d ln r
= 2

d2C1

d(ln r)2

(
1 +

dC1

d ln r

)−1

,

and

C2 = A

(
1 +

dC1

d ln r

)2

,

where A is some constant. Thus C2 raises from a fac-
tor larger than 2 (≈ 9/4) at the dissipative range which
strongly enhances the apparent range of proportionality

between C1 and C2. However, this change occurs on a
range proportional to

√
C2, giving a slope which raises

when the Reynolds number increases, as√
C2 ∝

√
lnRe.

Thus E.S.S. remains questionable and, with it, the pro-
cedure for improving the scaling exponent determination.
But the evidence of the stretching effect gives a strong
support to the physical picture which is behind the cas-
cade models. On the other hand, despite the spectacular
effects of intermittency on the wings of the velocity differ-
ences pdf, it could be treated as a simple correction. The
main physics is that of largely independent increments
for the velocity differences. The real origin of these incre-
ments, which could be the large scale pressure differences,
has to be elucidated.
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